A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem
نویسندگان
چکیده
In this paper, a novel multi-objective location model within multi-server queuing framework is proposed, in which facilities behave as M/M/m queues. In the developed model of the problem, the constraints of selecting the nearest-facility along with the service level restriction are considered to bring the model closer to reality. Three objective functions are also considered including minimizing (I) sum of the aggregate travel and waiting times, (II) maximum idle time of all facilities, and (III) the budget required to cover the costs of establishing the selected facilities plus server staffing costs. Since the developed model of the problem is of an NP-Hard type and inexact solutions are more probable to be obtained, soft computing techniques, specifically evolutionary computations, are generally used to cope with the lack of precision. From different terms of evolutionary computations, this paper proposes a Pareto-based metaheuristic algorithm called multi-objective harmony search (MOHS) to solve the problem. To validate the results obtained, two popular algorithms including non-dominated sorting genetic algorithm (NSGA-II) and non-dominated ranking genetic algorithm (NRGA) are utilized as well. In order to demonstrate the proposed methodology and to compare the performances in terms of Pareto-based solution measures, the Taguchi approach is first utilized to tune the parameters of the proposed algorithms, where a new response metric named multi-objective coefficient of variation (MOCV) is introduced. Then, the results of implementing the algorithms on some test problems show that the proposed MOHS outperforms the other two algorithms in terms of computational time.
منابع مشابه
Multi-objective evolutionary algorithms for a preventive healthcare facility network design
Preventive healthcare aims at reducing the likelihood and severity of potentially life-threatening illnesses by protection and early detection. In this paper, a bi-objective mathematical model is proposed to design a network of preventive healthcare facilities so as to minimize total travel and waiting time as well as establishment and staffing cost. Moreover, each facility acts as M/M/1 queuin...
متن کاملA Comparison of Four Multi-Objective Meta-Heuristics for a Capacitated Location-Routing Problem
In this paper, we study an integrated logistic system where the optimal location of depots and vehicles routing are considered simultaneously. This paper presents a new mathematical model for a multi-objective capacitated location-routing problem with a new set of objectives consisting of the summation of economic costs, summation of social risks and demand satisfaction score. A new multi-objec...
متن کاملEvaluating the Effectiveness of Integrated Benders Decomposition Algorithm and Epsilon Constraint Method for Multi-Objective Facility Location Problem under Demand Uncertainty
One of the most challenging issues in multi-objective problems is finding Pareto optimal points. This paper describes an algorithm based on Benders Decomposition Algorithm (BDA) which tries to find Pareto solutions. For this aim, a multi-objective facility location allocation model is proposed. In this case, an integrated BDA and epsilon constraint method are proposed and it is shown that how P...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملA Novel Pareto-Based Meta-Heuristic Algorithm to Optimize Multi-Facility Location-Allocation Problem
This article proposes a novel Pareto-based multiobjective meta-heuristic algorithm named non-dominated ranking genetic algorithm (NRGA) to solve multi-facility location-allocation problem. In NRGA, a fitness value representing rank is assigned to each individual of the population. Moreover, two features ranked based roulette wheel selection including select the fronts and choose solutions from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Appl. Soft Comput.
دوره 13 شماره
صفحات -
تاریخ انتشار 2013